Mahatma Fule Arts, Comm. \& Sitaramji Chaudhari Science Mahavidyalaya, Warud.

Department of Mathematics

CLASSICAL MECHANICS

Prof. V. S. Bawane Head. Dept. of Mathematics

- Mechanics : Effect of forces on material bodies.

-Matter : Universe is either matter or energy. Whatever we feel, see, or perceive around us is a matter. It occupies Space. Ex. Table, Chair, Air, Water etc.
-Body : Portion of matter.
-Particle : Infinitesimal portion of matter having position. -Rigid body :A system of particles.

- Mass : A quantity of matter.
-Weight : w = mg
-Force : An external influence which changes state of rest or uniform motion of a body.
-Resultant force and its components

$$
\bar{R}=\overline{p_{1}}+\overline{p_{2}}+\overline{p_{3}} \ldots \ldots \ldots+\overline{p_{n}}
$$

-Equilibrium of forces

$$
\bar{R}=\overline{p_{1}}+\overline{p_{2}}+\overline{p_{3}} \ldots \ldots \ldots+\overline{p_{n}}=0
$$

Resolved Parts of a Force

Let $\overline{\mathbf{R}}$ be the resultant of two forces $\overline{\mathbf{P}} \& \overline{\mathbf{Q}}$ acting along OX \& OY.
$\therefore \quad \overline{\mathrm{R}}=\overline{\mathrm{P}}+\overline{\mathrm{Q}}$

$$
\begin{aligned}
& \overline{\mathrm{R}} \times \overline{\mathrm{P}}=\overline{\mathrm{P}} \times \overline{\mathrm{P}}+\overline{\mathrm{Q}} \times \overline{\mathrm{P}} \\
& |\overline{\mathrm{R}} \times \overline{\mathrm{P}}|=|\overline{\mathrm{Q}} \times \overline{\mathrm{P}}|
\end{aligned}
$$

$\therefore R P \sin \theta=Q \operatorname{Psin} \frac{\pi}{2} \Rightarrow Q=R \sin \theta$

Similarly

$$
\begin{aligned}
& \overline{\mathrm{R}} \times \overline{\mathrm{Q}}=\overline{\mathrm{P}} \times \overline{\mathrm{Q}}+\overline{\mathrm{Q}} \times \overline{\mathrm{Q}} \\
& |\overline{\mathrm{R}} \times \overline{\mathrm{Q}}|=|\overline{\mathrm{P}} \times \overline{\mathrm{Q}}|
\end{aligned}
$$

$\therefore R Q \sin (\pi / 2-\theta)=P Q \sin \frac{\pi}{2} \Rightarrow P=R \cos \theta$
Hence, $\quad \mathrm{P}=\mathrm{R} \cos \theta \quad \& \quad \mathrm{Q}=\mathrm{R} \sin \theta$ are resolved parts of R along OX \& OY.

Resultant of \mathbf{n}-coplanar forces

Let $\overline{\mathrm{P}_{1}}, \overline{\mathrm{P}_{2}}, \overline{\mathrm{P}_{3}}, \ldots \ldots \ldots, \overline{\mathrm{P}_{\mathrm{n}}}$ be the $\mathrm{n}-$ coplanar forces \bar{R} acting upon the particle at o. Let R be their resultant Making an angle θ with ox. Let $\theta_{1}, \theta_{2}, \theta_{3}, \ldots \ldots \ldots \theta_{n}$, be the angles made by $\overline{\mathrm{P}}_{1}, \overline{\mathrm{P}}_{2}, \overline{\mathrm{P}}_{3}, \ldots \ldots \ldots, \overline{\mathrm{P}_{\mathrm{n}}}$

$$
\bar{P}_{1}=P_{1} \cos \theta_{1} i+P_{1} \sin \theta_{1} j
$$

$\bar{P}_{2}=\mathrm{P}_{2} \cos \theta_{2} \mathrm{i}+\mathrm{P}_{2} \sin \theta_{2} \mathrm{j}$
$\overline{P_{n}}=P_{n} \cos \theta_{n} i+P_{n} \sin \theta_{n} \mathrm{j}$

$$
\bar{R}=\overline{\mathrm{P}}_{1}+\overline{\mathrm{P}}_{2}+\overline{\mathrm{P}}_{3}+\ldots \ldots+\overline{\mathrm{P}_{n}}
$$

$\therefore \overline{\mathrm{R}}=\left(\mathrm{P}_{1} \cos \theta_{1}+\mathrm{P}_{2} \cos \theta_{2}+\cdots \ldots+\mathrm{P}_{\mathrm{n}} \cos \theta_{\mathrm{n}}\right) \mathrm{i}$

$$
+\left(\mathrm{P}_{1} \sin \theta_{1}+\mathrm{P}_{2} \sin \theta_{2}+\cdots \ldots+\mathrm{P}_{\mathrm{n}} \sin \theta_{\mathrm{n}}\right) \mathrm{j}
$$

Since $\overline{\mathrm{R}}$ makes an angle θ with ox

$$
\bar{R}=\mathrm{R} \cos \theta \mathrm{i}+\mathrm{R} \sin \theta \mathrm{j}
$$

: $R \cos \theta=\sum^{n} p_{r} \cos \theta_{r}=X \quad$ and $R \sin \theta=\sum_{r=1}^{n} p_{r} \sin \theta_{r}=Y$
$\therefore \mathrm{R}^{2}=\sqrt{\mathrm{X}^{2}+\mathrm{Y}^{2}}$ and $\theta=\tan ^{-1} \frac{\mathrm{Y}}{\mathrm{X}}$
Where,

$$
X=P_{1} \cos \theta_{1}+P_{2} \cos \theta_{2}+\cdots \ldots+P_{n} \cos \theta_{n}
$$

$$
Y=P_{1} \sin \theta_{1}+P_{2} \sin \theta_{2}+\cdots \ldots+P_{n} \sin \theta_{n}
$$

Lami's Theorem

A particle is in equilibrium under the action of three
forces $\overline{\mathrm{P}}, \overline{\mathrm{Q}}, \overline{\mathrm{R}}$ if and only if,

$$
\frac{\mathrm{P}}{\sin \alpha}=\frac{\mathrm{Q}}{\sin \beta}=\frac{\mathrm{R}}{\sin \gamma}
$$

Where,

$$
\alpha=\Varangle(\overline{\mathrm{Q}}, \overline{\mathrm{R}}), \beta=\Varangle(\overline{\mathrm{P}}, \overline{\mathrm{R}}) \text {, and } \gamma=\Varangle(\overline{\mathrm{P}}, \overline{\mathrm{Q}})
$$

Sol.: A particle is in equilibrium under the action of three forces $\overline{\mathrm{P}}, \overline{\mathrm{Q}}, \overline{\mathrm{R}}$.
$\therefore \overline{\mathrm{P}}+\overline{\mathrm{Q}}+\overline{\mathrm{R}}=0$
Multiplying by $\mathrm{x} \overline{\mathrm{P}}$

$$
\begin{gathered}
\overline{\mathrm{P}} \times \overline{\mathrm{P}}+\overline{\mathrm{Q}} \times \overline{\mathrm{P}}+\overline{\mathrm{R}} \times \overline{\mathrm{P}}=0 \\
\overline{\mathrm{Q}} \times \overline{\mathrm{P}}=-\overline{\mathrm{R}} \times \overline{\mathrm{P}} \Rightarrow|\overline{\mathrm{Q}} \times \overline{\mathrm{P}}|=|\overline{\mathrm{R}} \times \overline{\mathrm{P}}|
\end{gathered}
$$

$\therefore \quad \mathrm{QP} \sin \gamma=\mathrm{PR} \sin \beta \Rightarrow \frac{\mathrm{Q}}{\sin \beta}=\frac{\mathrm{R}}{\sin \gamma}$
Multiplying (1) by $\mathrm{x} \overline{\mathrm{Q}}$

$$
\begin{align*}
& \overline{\mathrm{P}} \times \overline{\mathrm{Q}}+\overline{\mathrm{Q}} \times \overline{\mathrm{Q}}+\overline{\mathrm{R}} \times \overline{\mathrm{Q}}=0 \\
& \overline{\mathrm{P}} \times \overline{\mathrm{Q}}=-\overline{\mathrm{R}} \times \overline{\mathrm{Q}} \Rightarrow|\overline{\mathrm{P}} \times \overline{\mathrm{Q}}|=|\overline{\mathrm{Q}} \times \overline{\mathrm{R}}| \\
& \mathrm{PQ} \sin \gamma=\mathrm{Q} \sin \alpha \Rightarrow \frac{\mathrm{P}}{\sin \alpha}=\frac{\mathrm{R}}{\sin \gamma} \tag{3}
\end{align*}
$$

From (2) and (3) $\frac{P}{\sin \alpha}=\frac{Q}{\sin \beta}=\frac{R}{\sin \gamma}$
Where, $\alpha=\Varangle(\bar{Q}, \bar{R})$,

$$
\beta=\Varangle(\overline{\mathrm{P}}, \overline{\mathrm{R}})
$$

and $\gamma=\Varangle(\bar{P}, \bar{Q})$

Parallel Forces

Moment of force

```
Moment of force \(\overline{\mathbf{P}}\) about a fixed point ' 0 ' is defined as
\[
\mathrm{G}=\mathrm{P} \mathrm{p}
\]
```


G is positive if rotation is anticlockwise G is negative if rotation is clockwise

The moment of force about a fixed point is zero if the line of action of the force passes through it. i.e. $G=P p=0$ iff $p=0$

Vector moment of force

Let $\overline{\mathbf{P}}$ be a force acting at point A of a body whose P. V. w. r. to the fixed point be $\overline{\mathrm{r}}=\overline{\mathrm{OA}}$.
Then,

$$
\overline{\mathrm{r}} \times \overline{\mathrm{P}}=r \mathrm{P} \sin \alpha \overline{\mathrm{e}}
$$

$$
|\overline{\mathrm{r}} \times \overline{\mathrm{P}}|=\mathrm{rP} \sin \alpha
$$

$$
=\mathrm{Pp} \quad \text { where } \mathrm{p}=\mathrm{r} \sin \alpha
$$

$\therefore \quad|\bar{r} \times \bar{P}|=G \Rightarrow \bar{G}=\bar{r} \times \bar{P}$

Rule -1) : The algebraic sum of the moments of any number of coplanar forces about a point in their plane is equal to the moment of their resultant about that point. Proof: Let $\overline{\overline{\mathrm{R}}}$ is the resultant of any no. of coplanar forces $\overline{\mathrm{P}}_{1}, \overline{\mathrm{P}}_{2}, \overline{\mathrm{P}}_{3}, \ldots \ldots \overline{\mathrm{P}}_{\mathrm{n}}$, acting at point A.
i.e. $\overline{\mathrm{R}}=\overline{\mathrm{P}}_{1}+\overline{\mathrm{P}}_{2}+\overline{\mathrm{P}}_{3}+\cdots \ldots+\overline{\mathrm{P}}_{\mathrm{n}}$

Sum of the
moments $=\overline{\mathrm{r}} \mathrm{x} \overline{\mathrm{P}}_{1}+\overline{\mathrm{r}} \mathrm{x} \overline{\mathrm{P}}_{2}+\cdots . .+\overline{\mathrm{r}} \mathrm{X} \overline{\mathrm{P}}_{\mathrm{n}}$
of forces about O

$$
\begin{aligned}
& =\overline{\mathrm{r}} \times\left(\overline{\mathrm{P}}_{1}+\overline{\mathrm{P}}_{2}+\overline{\mathrm{P}}_{3}+\cdots \ldots+\overline{\mathrm{P}}_{\mathrm{n}}\right) \\
& =\overline{\mathrm{r}} \times \overline{\mathrm{R}} \\
& =\text { Moment of the resultant about } \mathrm{O} .
\end{aligned}
$$

Couple

A system of two equal and unlike parallel forces
-Two equal unlike parallel forces direction of lines of actions are not same form a couple.
-The perpendicular distance between the lines of action of forces forming a couple is called as the arm of a couple.
Let O be a fixed point.

Moment of	$=\overline{\mathrm{OA}} \times(-\overline{\mathrm{P}})$
$-\overline{\mathrm{P}}$ about O	
Moment of	$=\overline{\mathrm{OB}} \times \overline{\mathrm{P}}$
$\overline{\mathrm{P}}$ about O	

Sum of the moment of the forces forming a couple

$$
=\overline{\mathrm{OA}} \times(-\overline{\mathrm{P}})+\overline{\mathrm{OB}} \times \overline{\mathrm{P}}
$$

$=(\overline{\mathrm{OB}}-\overline{\mathrm{OA}}) \times \overline{\mathrm{P}}$
$=\overline{\mathrm{AB}} \times \overline{\mathrm{P}}$

The sum of the moment of the forces about a fixed point ' 0 ' is defined as the moment of couple

$$
\begin{aligned}
|\overline{\mathrm{G}}| & =|\overline{\mathrm{AB}} \times \overline{\mathrm{P}}| \\
& =\mathrm{AB} P \sin \alpha \\
& =\mathrm{P} p
\end{aligned}
$$

$$
\mathrm{G}=\mathrm{PAB} \quad \text { where } \mathrm{p}=\mathrm{AB} \text { the perp. }
$$

distance between the lines of
action of the forces.
i.e. the Arm of the couple.

Radial and Transverse Accelerations

$O \bar{P}=\bar{r}=x i+y j$
\Rightarrow velocity, $\bar{V}=\dot{\bar{r}}=\frac{d \bar{r}}{d t}=\dot{x} i+\dot{y} j$
and acceleration $\bar{a}=\frac{d \bar{v}}{d t}=\ddot{\bar{r}}=\dddot{x} i+\ddot{y} j$

Theorem: Prove that $\frac{d}{d t} \bar{e}_{r}=\bar{e}_{\theta} \frac{d \theta}{d t}$ and $\frac{d}{d t} \bar{e}_{\theta}=-\bar{e}_{r} \frac{d \theta}{d t}$

Proof: Let

$\bar{e}_{r}=\cos \theta i+\sin \theta j$ and $\bar{e}_{\theta}=-\sin \theta i+\cos \theta j$
$\therefore \frac{d}{d t} \bar{e}_{r}=-\sin \theta i(\dot{\theta})+\cos \theta i(\dot{\theta})=(-\sin \theta i+\cos \theta j)(\dot{\theta})=\bar{e}_{\theta} \frac{d \theta}{d t}$
And $\frac{d}{d t} \bar{e}_{\theta}=-\cos \theta i(\dot{\theta})-\sin \theta i(\dot{\theta})=-(\cos \theta i+\sin \theta j)(\dot{\theta})=-\bar{e}_{r} \frac{d \theta}{d t}$
$\therefore \frac{d}{d t} \bar{e}_{r}=\bar{e}_{\theta} \frac{d \theta}{d t}$ and $\frac{d}{d t} \bar{e}_{\theta}=-\bar{e}_{r} \frac{d \theta}{d t}$

Obtain the expressions for Radial and transverse accelerations
Let $O \bar{P}=\bar{r}=r \bar{e}_{r}$
where \bar{e}_{r} is the unit vector along radial direction.
$\Rightarrow \bar{V}=\dot{\bar{r}}=r \frac{d}{d t} \bar{e}_{r}+\bar{e}_{r} \dot{r}=r\left[\bar{e}_{\theta} \dot{\theta}\right]+\bar{e}_{r} \dot{r} \quad, \quad$ where $\frac{d}{d t} \bar{e}_{r}=\bar{e}_{\theta} \frac{d \theta}{d t}$
$\bar{V}=\dot{\bar{r}}=\dot{r} \bar{e}_{r}+r \dot{\theta} \bar{e}_{\theta}$
(2) \therefore Speed $\quad V=\sqrt{\dot{r}^{2}+r^{2} \dot{\theta}^{2}}$
$\bar{a}=\frac{d \bar{V}}{d t}=\ddot{\bar{r}}=\dot{r} \frac{d}{d t} \bar{e}_{r}+\bar{e}_{r} \ddot{r}+r \dot{\theta} \frac{d}{d t} \bar{e}_{\theta}+r \bar{e}_{\theta} \ddot{\theta}+\dot{\theta} \bar{e}_{\theta} \dot{r}$
$=\dot{r} \bar{e}_{\theta} \dot{\theta}+\bar{e}_{r} \ddot{r}+r \dot{\theta}\left(-\bar{e}_{r} \dot{\theta}\right)+r \ddot{\theta} \bar{e}_{\theta}+\dot{r} \dot{\theta} \bar{e}_{\theta}$
$\bar{a}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \bar{e}_{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \bar{e}_{\theta}$

$$
\bar{a}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \bar{e}_{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \bar{e}_{\theta}
$$

Now $\frac{1}{r} \frac{d}{d t}\left(r^{2} \dot{\theta}\right)=\frac{1}{r}\left[r^{2} \ddot{\theta}+2 r \dot{r} \dot{\theta}\right]=[r \ddot{\theta}+2 \dot{r} \dot{\theta}]$
$\therefore \bar{a}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \bar{e}_{r}+\frac{1}{r} \frac{d}{d t}\left(r^{2} \dot{\theta}\right) \bar{e}_{\theta}$
Hence,
Radial acceleration $a_{r}=\ddot{r}-r \dot{\theta}^{2}$
And Transverse acc $a_{\theta}=\frac{1}{r} \frac{d}{d t}\left(r^{2} \dot{\theta}\right)$
Total acc $a=\sqrt{\left(\ddot{r}-r \dot{\theta}^{2}\right)^{2}+\left[\frac{1}{r} \frac{d}{d t}\left(r^{2} \dot{\theta}\right)\right]^{2}}$
If ϕ is the angle made by trans.acc. with radial acc.then,
$\tan \phi=\frac{\frac{1}{r} \frac{d}{d t}\left(r^{2} \dot{\theta}\right)}{\ddot{r}-r \dot{\theta}^{2}} \quad$ i.e. $\tan \phi=\frac{a_{\theta}}{a_{r}}$

Lagrangian Dynamics

Degrees of Freedom:

Generalized Coordinates and Velocities

Constraints

Force of constraints does no work in any possible displacement
Let \bar{R} be the reaction of the surface (or force of constraints)
Then \bar{R} is along the normal to the surface. Hence orthogonal to the displacement vector $d \bar{r}$.
$\therefore \bar{R} \bullet d \bar{r}=0$
i.e. work done by \bar{R} in any possible displacement is zero.

Thus, Force of constraints does no work in any possible displacement

References

-T M Karade, M S Bendre
-S L Loney
-S L Loney
\cdot H. Goldstein
-B M Roy
: An Elementary Treatise on The Dynamics of a Particle of Rigid Bodies Cambridge University Press, 1956.
: Lectures on Mechanics
Sonu-Nilu Publication, Nagpur, Maharashtra.
: Statics; McMillan 7 Co., London.
Cabruge Unisily Prss, 1 osb.
: Classical Mechanics
Narosa Publishing House, New Delhi.
: Mechanics
Das Ganu Prakashan, Nagpur.
Linim?

